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Phase transitions in scale-free neural networks: Departure from the standard mean-field
universality class
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We investigate the nature of the phase transition from an ordered to a disordered state that occurs in a family
of neural network models with noise. These models are closely related to the majority voter model, where a
ferromagneticlike interaction between the elements prevails. Each member of the family is distinguished by the
network topology, which is determined by the probability distribution of the number of incoming links. We
show that for homogeneous random topologies, the phase transition belongs to the standard mean-field uni-
versality class, characterized by the order parameter expg@reht2. However, for scale-free networks we
obtain phase transition exponents ranging from 1/2 to infinity. Furthermore, we show the existence of a phase
transition even for values of the scale-free exponent in the int¢ival2, where the average network con-
nectivity diverges.
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I. INTRODUCTION In this paper we study the ordering processes that occur in

To determine the relationship between the topology of acomplex neural networks with noise. The models we con-

complex network and its dynamical behavior has become glder here are based on the McCulloch-Pits model of neuron-

challenge in current scientific research. In the past few year%eeurr?:;.gﬁtera\fgfe '}12(')(;3'5\,\/?%?16'?1550?;:? crgr!zﬁ?joelr\évghfor
there has been a great amount of work to find out the struc- Jorty '

tural properties of complex networks, both theoretically andnany years as a prototype for the study of ordering phenom-

experimentally. These studies have revealed that a wide Vag'i?ii[nlff_rgr% (())rg:eroetgetgugies cl)srdtgrg2asrgct:eesrItzheay:)eccpljlravs\‘/?\gna?r;e
riety of networks occurring in nature exhibit nontrivial to-

pologies[1-3]. Since the elements in many of these net_noise parameter is changed. Using a mean-field theory ap-

works also interact dynamically, it is a fundamental problemproaCh’ we find that when nontrivial topologies are imple-

to determine how the network topology affects its propertiesmented in the system, the universality class of this phase

Although some authors have recently addressed this probleltrr1anSition departs f“’!“ the standard result in Whi.Ch the arder
in different contexts/4—16, the topic still remains largely parameter exponent is 1[23]. It is worth mentioning that a

unexplored. somewhat similar departure was found in REgf4] for a

Within this framework, ordering phenomena are particu_phenomenological Landau theory of thermodynamic equilib-
f rium systems. However, our results differ from the ones

larly important because they provide us with general criteri . . ;
for the existence or absence of collective behavior in muItiE-afound by Goltsewet al. in several important aspects. First of

component systems. Recent studies on ferromagneticlike nq?gnzvri ?ﬁg&:{ ItgsadgséﬂgngS d&éﬁ? %iméli?sctnec:jn?]%li—l-

works have shown that the network topology dramatically o .
affects their ordering processes. For example, in Oneyvorks for which it is not clear that a thermodynamic formal-

dimensional Ising models with small-world topology, there ism, through a phenomenological free energy, should hold.

exists a phase transition from magnetized to demagnetize%eCond and more important, we assume scale-free topology

states even for very small values of the rewiring probabilityOnly for the distribution of Incoming connections, so the d_e-
[4-10. Another example is the propagation of an infectiousparture from the standard mean-field universality class arises

disease in a population. When the network of infectious conlcrom an entirely d!fferent meCh"?‘”'S”.‘ than the one proposed
tacts has a homogeneous random topology, there exists'"& Ref. [24]. We will return to this point further on.
threshold for the fraction of vaccinated people above which
the propagation stops. However, when such a network has a
scale-free topology, the propagation never stops and the dis-
ease percolates across the entire populdtldr14. Results The system we will be working with consists of a set\bf
of this sort make it increasingly important to systematicallydiscrete variablegvotery oy, o5, ..., on, €ach acquiring
analyze the relationship between the system’s topology andnly two possible valuegopiniong o,=+1 or o,=-1, that
its collective behavior. change at each time step. The valueogft+1) will be de-
termined by another set &f, voters according to the follow-

ing scheme.

*Also at the Consortium of the Americas for Interdisciplinary To each voter o, we assign a set T,
Science, University of New Mexico, Albuguerque, NM, USA. Elec- =10i,(), ai,(t), ... "Tikn(t)} of k, different elements chosen
tronic address: max@fis.unam.mx randomly from anywhere in the system with equal probabil-
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FIG. 1. Schematic representation of the model. The network 0 50 000 120030002300
consists ofN elements(circles. Each elementr, receives inputs t
from a set of othek, elements randomly chosen from anywhere in ) )
the system. The connections are weighted with the faatQrsso FIG. 2. (Color onling Temporal evolution of the order param-
that the inputs do not all contribute equally to the stat@,q)f eter (t). This graph was generated for a scale-free network with

N=20000 elementsy=2, =0.05, andwnjzl for everyn;. The
stationary valuel of the order parameter is indicated by the dashed

ity (see Fig. 1 We will call Z,, the set ofinput element®f (colored line.

op.
We letk,, the number of inputs of,,, be a random vari-
able chosen from a probability distributid?(k), which we hi K
will refer to as theinput probability distribution In this way this work)

the number of inputs may be different from one element tot. Note_ tr]?t nre]|ther t_het_set of mp;:tglsments_ n%r thet%onnec-
another. The probability functio(k) determines the net- ion weights change in timguenched dynamigsOnce they

work topology. IfP(k)=e™®K¥/k!, we have the trivial homo- have.belen as&gned to every element.m the network, they
. ) remain fixed during the temporal evolution of the system.

geneous random topology in which every element has, on

average K inputs. We are interested here in the c&gk)

~k™”, which corresponds to the so-called scale-free topol- Ill. PHASE TRANSITIONS

ogy.

phenomenology as fop<<1/2 and will not be considered in

To characterize the ordering processes in the network, we

We define the majority functioM,(t) associated wittwr, introduce the instantaneous order paramefey as
at timet as
N
S w0 = tim {3 o0 @)
Mn(t) =sg E ano-nj(t) ) (1) N—oxN n=1 " ,
j=1

h is th iaht of th ion b q where(---) denotes an average over the realizations of the
Wherewn, 1 t € Welg t 0 t € connectloq etweep an system. This quantity is a measure of the order in the net-
oy, These weights just indicate that the input elements \york: if the o, are randomly oriented thefi=0, and|y{=1 if
might not all equally contribute to the majority functidf,. gl are “aligned.” In the limitt— =, y{t) reaches a stationary
Different choices of the connection weights lead to different,, 5 ,e w (see Fig. 2
models of neural networkgl7]. In this work we take the We want to find¥ as a function of the noise intensity
w, 's as random variables distributed with probablmM(vy). for arbitrary network topologies given bi(k). The case

_Once every element;, of the network has been assigned p(k)= 5 was analyzed in Ref23]. This case corresponds
with a set of input elements and a set of connection weightsy 5 trivial homogeneous random topology in which every

the dynamical evolution of the network is given by element has the same numbeof inputs. It was shown that,
, o _ for this trivial topology, there exists a critical valug of the
o(t+1) :{M”(t) Wfth probabflfty L=, (2) noise intensity for which¥ #0 if <. and ¥=0 if 7
=My (t) with probability 7. = 7. Near the phase transitiod, behaves a® =~ (7.~ 7)?

The noise intensityy is the probability for the majority func- Where 8=1/2. Therefore, the phase transition in this case
tion to be violated. It is worth mentioning that whep=0  Pelongs to what we will refer to as tretandard mean-field
there are no absorbing states in the system. In the context gfiversality classAs we show below, this is always true if
the majority voter model, this parameter represents the “fre@ll the moments oP(k) are finite. However, the scale-free
will” of the voters; namely, it allows the possibility that even distribution P(k) ~k™ does not satisfy the above condition.
if the majority of my friends have one opinion about an  Figure 3 shows¥ as a function ofy for scale-free net-
issue, with probabilitys | can have the opposite opinion. Works with N=10° elements and different values of the
The noise intensity; would be an analog to the temperature Scale-free exponeng. To obtain these curves we used the
in ferromagnetic systems. The dynamics of the network cafiput probability distribution P(k)=k™ V- (k+1)""b,
thus be set from purely deterministic to purely random bywhich certainly behaves @(k) ~ (y-1)k™ for large values
changing the value of; from 0 to 1/2.(Higher values ofy  of k [26]. Additionally, the connection weight distribution
would describe a system where individuals would tend to beP,(w)=d(w-1) was used for these simulations. Similar re-
of an opposite mind to the majority of the opinions thatsults are obtained for other choicesRf(w) as long as it is
influence them; as we are updating all thig variables si- not a symmetric function. It is apparent from Fig. 3 that a
multaneously, such anarchism leads to essentially the sanphase transition exists. However, its universality class de-

066130-2



PHASE TRANSITIONS IN SCALE-FREE NEURAL.. PHYSICAL REVIEW E 70, 066130(2004)

1

lim_..¢,(t)=¢. These assumptions are valid as long as the
k, inputs of eachr,, are randomly selected from anywhere in

s the system with uniform probability. In doing so, the prob-
0.6 ability that two different elements share the same inputs is
¥ negligible for very large systems. Therefore, in the liNit
0.4 — one hasZ,NZ;= for all n#j, which implies the sta-
tistical independence of the network elements. If we further
% assume thaty, is statistically equivalent to any othet, then
a the stationary valu@ reached by theb,(t)’s is site indepen-

0005 01 0.'15n 02 025 03 035 dent.

From the previous assumptions it follows that the station-
FIG. 3. (Color onling The order parameteF as a function of ary value of P;(t) is a function only of ¢ and
the noise intensity for different values of the scale-free exponent k;: |ithwP;(t): P+(¢,kn)_ Thus, in the limitt— o, Eq. (5)
v. These curves were numerically computed for scale-free networksecomes
with N=10° elementsw, =1 for every n;, and input probability
distribution P(k) =k~ (D = (k+1)=(D, >
¢= 2 P)[(L - 27)P (k) + 7], (6)

pends on the value of. In other words, near the phase ko=t

transition W behaves a® ~ (7.~ 7)”, where nowg is not  \We can rewrite the above equation in terms of the stationary
necessarily 1/2 but is a function of It is important to note  value ¥ of the order parameter by noting from Ee) that
that the phase transition exists even for1.75 andy=2, W¥=2¢—1. Substitutingg=(¥+1)/2 into Eq.(6) we obtain
which correspond to networks with infinite average connecthe following fixed point equation foW':

tivity. We will show that phase transitions will occur for any

y>1.5. ~

In order to find¥ as a function ofy, let ¢,(t) be the W=-1+22 Pk)(1-2pP" (W k) +75]. (7
probability thato,(t)=1. The instantaneous order parameter kn=1
ydt) is then given by An exact expression foP*(¥,k) was found in Ref[23]

1 N using the mean-field approach. For the sake of completeness
(1) = lim = [2¢4(t) - 1]. (4)  we reproduce in the Appendix the derivation of this expres-
N— N7 sion, which is

Analogously, letP;(t) be the probability thaM,(t)=1 given 1 K
that o, hask, inputs. Note thaP;(t) is just the probability PH(W,K) ==+ >, a(k,m)¥™, (8)
for the sumE}‘glwnjanj(t) to be positive. From the above 2 e

definitions and Eq(2), it follows that ¢,(t) obeys the dy-

X ; where the coefficienta(k,m) are defined as
namical equation

oo im+1< k ) r ~ o dh

a(k,m) = g T h(n)]™—. 9)
gn(t+1)= 3 PI){(1= )P0+ 7[1-PHOT. () (kmy=— "\ )| OTThOII=E. o

ky=1

The first term on the right-hand side of the above equation i the last expressio(\) andh()) are the real and imagi-
the probability that the majorityl,(t) at timet is positive ~ nary parts, respectively, of the Fourier transform of the con-
and obeyed. The second term gives the probability that thgection weight distributior,(w). From Eq.(9) and the fact
majority at timet is negative but is violated. In both cases, that h(-\)=-h(\) for any P,(w), it follows thata(k,m)=0
a, will be positive at timet+1. It is important to note that for even values ofn. Therefore, only odd powers & con-
PA(1) is a function of¢g, (1), én(1), ..., ¢nkn(t)- Each¢,(t)  tribute to the sum in Eq(8). Additionally, if P,(w) is a
obeys an equation identical to E(), except for the sub- symmetric function, therh(\)=0, which gives P*(¥,k)
scripts. Therefore, Eq(5) represents a hierarchy of nested =1/2. Consequently, for symmetric connection weight distri-

nonlinear equations for the,(t)'s whose exact analytical putions¥'=0 and there is no order in the system for any
treatment is out of our reach. Nonetheless, we can adopt @alue of the noise intensity.

mean-field approach to solve this system of equations. Substituting the result8) into Eq.(7) we get
o k
IV. MEAN-FIELD THEORY FOR P} W =2(1-252, Pk > alkm)wm. (10

k=1 =1
The mean-field approach consists in the following as- "

sumptions:(1) All the o,'s are statistically independent) In order to determine the existence and nature of a phase
the probability ¢,(t) is the same for all the elements of the transition in the system we need to expand the right-hand
network and reaches a constant value in the stationary stateide of this equation in a series of growing powerslof
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V. SYSTEMS WITH HOMOGENEOUS RANDOM respectively. Therefore, the central limit theorem applies to
TOPOLOGY the distribution ofé, for large values ok, for which P* (W, k)

A first approach to writing the right-hand side of EG0) will be given by

as a power series i is to interchange the two sums ap-

pearing in this equation. Assuming that this is possible Eq. PH(W k) ~ f (f M)z}dg (17)

(10) becomes ' V2mkA2 2kA?

W =2(1-292, b,¥™, (11) 1 uk?
m=1 ==|1+ er(( oA ) (18
where the coefficientb,, are given by !

b= 2 P(Kia(k,m). (12) e (“h/) (19

k=m 2 oVm@n+Dnt\ 24
Near the phase transitidﬂf[<1 and we can keep only the Comparing the last expression with E@) (making m
first two terms of the sum in Eq11), which gives =2n+1 and ¥=u/(w)), we obtain thata(k,m)~ k™2 for

¥ = 2(1 - 27)(b,¥ + by ¥d). (13)  large values ok. This result prevents us from changing the

. . . } order of summation in Eq.10) for an arbitrary input distri-
In addition to the trivial solution¥’=0, the above equation pytion P(k). Indeed, sinca(k,m)~ k™2 for largek, the co-

has two other nontrivial solutions given by efficientsb,,, appearing in Eq(11) are well defined only if all
1 1 the moments ofP(k) are finite. However, whe®(k) ~
V2~ |b_<bl - 2(1—277)> : (14)  the coefficientd,, diverge form=2(y-1). Consequently, in
. _

this case the series in growing powers ¥f of Eq. (10)

The critical valuer, of the noise at which the phase transi- cannot be obtained by interchanging the sums and the analy-
tion occurs is determined from the above equation by theis leading to Eq(16) is no longer valid.

conditionw?=0, which gives

1 1 VIl. DEPARTURE FROM THE STANDARD MEAN-FIELD
7=\1 " 2p, ) (15) UNIVERSALITY CLASS
On the other hand, it follows from E@14) that, very close to The results of the preceding sections show that if the mo-
the phase transitionV behaves as ments ofP(k) are all finite, the phase transition predicted by

Eq. (7) belongs to the standard mean-field universality class.

2_&( - for0< p-n<1 This is not necessarily true for a scale-free distribution. Nev-
\x’|b3| e e ' (16) ertheless, the existence and the nature of a phase transition in
this case will still depend on the smali expansion of the
right-hand side of Eq(7), which vanishes a¥ — 0, but is

The above analysis shows that if the two sums in(E&6) no longer analytic a##=0. In order to evaluate the behavior
can be interchanged, then the phase transition belongs to tlier a scale-free distribution, it is necessary to extract first the
standard mean-field universality class, for which the ordesingular part of Eq(7). To this end, we begin by assuming
parameter exponent 8=1/2. As weshow next, such inter- that asymptoticallyP(k) ~ k™, with 3/2<y<5/2. This en-
change is possible only if all the momentsR(k) are finite, sures that b,=3;_,P(k)a(k,1) converges but by,
as for a Poisson distribution. However, this condition is not=>7_ P(k)a(k,m) diverges form>1. Then we consider the
true for P(k) ~ k™. obvious identity

0 for n= 7.

dP*(0,k
( )q,

VI. THE CENTRAL LIMIT THEOREM P*(¥,k) =P*(0,k) + v
J

Although Eq.(9) gives the exact value ad(k,m) for a .
particular connection weight distributio®,(w), the central f f‘/’ PP, k)dwrdwr (20)
limit theorem implies thaa(k, m) ~ k™2 for large values ok ayr ,
and anyP,,(w) with finite first and second moments.

As mentioned aboveR*('V,k) is the probability that the which in this case is useful because for 373<5/2, all the
sum gkzﬁ}‘zlwnjcrnj appearing in the definition of the major- derivativesd™P*(¥,k)/d¥™ diverge form=2 when— 0.
ity rule, evaluates to a positive number. Théerms in this  Thus, the nonanalytic behavior & (¥ ,k) is contained in
sum are independent identically distributed random variablethe last term of Eq20). From Eq.(8), which gives the exact
with meanu=¥(w) and varianceA\>=(w?)-W¥Xw)?, where value of P*(¥,k), we obtain P*(0,k\=1/2 and
(w) and (w?) are the first and second moments Rf(w), dP*(0,k)/a¥=a(k,1). Therefore, Eq(20) becomes
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PHW,K) = = +a(k 1w +J f ’92P+(f2/ k)dW’dz//.

(21)

Substituting the last result into E¢7), and taking into ac-
count thatb, =%, ,P(k)a(k, 1) [see Eq(12)], we get

VRt
V=2(1- 2n)[b1\p+2p(k)f fd UL

2y dgb”dz/f'].

(22)

PHYSICAL REVIEW E 70, 066130(2004)
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FIG. 4. Critical valuer, of the noise intensity as a function of

In the rangeye (3/2,5/2 that we are considering, the the scale-free exponent The curve is the graph of the analytic

nonanalyticity comes from the large behavior of the last

solution Eq.(15). Note thatn,<1/2 even for 3/ y<2, where

term of Eq.(22). Thus, to determine its nonanalytic behavior, the average network connectivity is infinite.

we are entitled to use the approximationPtq¥ k) arising
from the central limit theorem, in particular E@L8). In the
small¥ limit, P*(¥,k) can be written as

. _ } ‘I’<W>kl/2
P*(W k) = 2{1+erl<—\/m )}

Substituting the last expression into Eg2) we get

<W>2>3/2
W~ 2(1 - 277)[b1\1f ( B

f\PJ W(E P k)k3/2 k(W)ZW'2/2<W2)>dW/d¢ :|

(24)

(23)

The singular behavior of the sum can be evaluated by writing

P(k)=Ck™ (whereC is a numerical constanand replacing
the sum by an integral ovée This procedure gives

V= 2(1-27)
X [bqu - £< w” )rl lIf|~1f|2’“°'] :
\!
(25)

7\ 2(w?)
which substitutes for Eq13) as the smalll' approximation

I'(5/2 -v)
(2y-3)(2y-2)

of the fixed point equation for scale-free topologies with

3/2<y<5/2.
For y=5/2 alogarithmic correction appears and Eg5)
should be replaced by

B ~ _E <W>2 )3/2 5
¥ ~2(1 277){b1\1r 3\G<2<w2> V3Inv||.

(26)

linear. Consequently, there is no phase transition: the system
remains ordered for alh<<1/2. However, the order param-
eter vanishes a¥ ~ (1/2-7)Y®2Y when —1/2.

Thus, the range of interest is 3#2y<5/2 for which the
behavior of the fixed point equation is described by EBS)
and (26). In this range the system will exhibit a phase tran-
sition at a critical value of the noise intensigy<<1/2. From
Egs.(25) and(26) we obtainz,=3(1-1/2b,), just as in the
standard mean-field cagsee Eq(15) and Fig. 4. However,
the phase transition in this case will not be characterized by
the standard mean-field exponents. Indeed, for <342
<5/2, Eq.(25) predicts that very close to the phase transi-
tion, ¥ behaves as

¥ {Eﬂzy—em— )b
CI'(5/2 -v)

2 2\ \ y-1 1U(2y-3)
X( <W>) (77c_7]):| .

(w)?

Thus, the exponeng=(2y-3)~* characterizing the behavior
of the order parameter neay, is in the rangg,1/2) asy
varies from 3/2 to 5/2°. On the other hand, foy=5/2, the
logarithmic correction still gives a deviation from standard
mean-field behavior. In this case, Eg6) gives

6\ wb? [ 2(w?) |32
¢ w2 (7= m)

Figure 5 showsV as a function ofy.—# for different
values of y in a log-log plot. The symbols are the same
numerical data as in Fig. 3 and the lines are the graphs of the
theoretical results given in Eqgl6), (27), and(28), depend-
ing upon the corresponding value of We setC=y-1,
which is the normalization constant of the power-law distri-

(27)

W2|In ¥| ~ (28)

For y>5/2, the coefficienb; converges and the behavior butionP(k)=Ck™” whenk varies continuously between 1 and
of the fixed point equation near the transition is accuratelye. We can see from Fig. 5 the excellent agreement between
reproduced by Eq(13). The nonanalytic terms appear as simulation and theory.
higher order corrections. In this case, the phase transition

will fall again in the standard mean-field universality class as
described in Eq(14). On the other hand, for lower values of

v, hamely, for X y=<3/2, the coefficientr; diverges. An

VIIl. SUMMARY AND DISCUSSION

We have considered the phase transitions from ordered to

analysis along the same lines as above shows that, in thifisordered states that occur in a family of neural network
case, the nonanalytic term appears as a power smaller thamodels with noise. The existence and nature of the phase
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10— v the networks we have considered, the scale-free topology is

/M - implemented only in the network d@fiput connections. Since
/ the input elements are chosen with uniform probability from
anywhere in the system, it turns out that th&putconnec-
tions follow a Poisson distribution. Therefore, we never have
isolated “hubs” dominating the dynamical behavior of the
entire system, which is what causes the departure from stan-
dard mean-field behavior in Goltsev’s work.
, Third and probably more important, we have shown the

102 existence of a phase transition even in the range<3y2
In(n,-n) =<2, in which the average network connectivity is infinite. To
our knowledge, this is the first example of a phase transition
at “finite temperature” occurring in a network with infinite
are the result of the simulatioisame data as in Fig.)&nd the (t:)ongeﬁtIVIty.tTf}ls risult Itshlnflcoptrast W'T;Q(ek)one r(tap:)orted
solid lines are the graphs of the theoretical solutions given in th«?.y. olisevet al, where . .e rs mpmen must be
text: Eq.(16) for y=3, Eq.(28) for y=2.5, and Eq(27) for y=2 linite for the phase transition to exist.
and y=1.75. In the majority voter networks we have analyzed, the
phase transition will exist as long as tki€’? moment of

transition are strongly determined by the input probability P(K) is finite. Th|ks result can be understood by considering

distribution P(k). If all the moments ofP(k) are finite(ho-  the quantityé==j_,wy oy, @ppearing in the definition of the

mogeneous random topologjethe phase transition belongs Majority rule, as a randormg with average value

to the standard mean-field universality class; namely, in theu=(W)Wk and rmsA, =\ k((w?) - W(w)?). According to the

limit %— 7, the order parameter behaves ¥s- (7,—7)?  central limit theorem(see Sec. \j| the convergence of the

with B=1/2. sum=, (e A P(k) ~ =,kY2P(k) is a necessary condition for
Departure from the standard mean-field universality clasghe existence of the phase transition. This convergence guar-

might occur ifP(k) has divergent moments, as for scale-freeantees that the quantity

networks whereP(k) ~ k™. In this case, the phase-transition

exponents is a function of the scale-free exponentTable

| summarizes hows and the critical noisej, depend ony. i

There are several important aspects to mention. Firstyfor A_k

€ (1,3/2] the critical value of the noise ig,=1/2. This is

the maximum value that the noise intensity can acquire and

would correspond to infinite temperature in ferromagnetic-

: o remains finite. In such a case, there will always exist a “finite
like systems. Therefore, in this case the network always ext'emperature’(namely, a critical value of the noisg.<1/2)

hibits long range order for any “finite ter?/%egature." The or- o+ \vhich the order in the system is destroyed.
der parameter vanishes ai~(1/2-7)"*2" when » For y>5/2 the phase transition falls again into the stan-
—1/Z. dard mean-field universality class. It is worth mentioning
Second/, forye(3/2,5/2 we have n.<1/2 and W yhat some preliminary numerical results indicate that this is
~ (7= m)"?™® when n— 7. This behavior of the order 550 the case for one-dimensional small-world networks with
parameter represents a clear departure from the standajige same dynamical interaction we have presented here. The
mean-field universality class. Although Goltset al. also  mean-field assumptions are not valid in this case since the
found a similar result in a phenomenological Landau theorys|ements are no longer statistically independent. Neverthe-
of ferromagnetic systemiz4], their departure obeys an en- |ess, the phase transition in such networks is still in the stan-
tirely different reason from the one we have found here. Ingard mean-field class for any nonzero value of the rewiring
probability. Whether the convergence of all the moments of
TABLE I. B and 7, for different values ofy. In the range 1 p(k) guarantees or not the standard mean-field universality
<y=3/2 there is no phase transition singg=1/2 is the mxi- (355 in this family of networks, regardless of the statistical
mum vglue_that the r_10|se intensity can acquire. #¥o6/2 there is independence of the elements, is still an open problem.
a logarithmic correction tg=1/2. Finally, regarding the temporal evolution of the order pa-
rameter towards its steady value, a stability analysis of the

10°T
In¥

23
v

oo

<R =

10

W
wn
1

> o

10*

FIG. 5. (Color onling Log-log plot of ¥ as a function of,
-7 for different values of the scale-free exponentThe symbols

=3 P(

ko1 A

v~ (= m)” evolution equation predicts that the order parameter ulti-
B T mately decays exponentially to its stationary value except at
the critical noise, where a power law decay ensues. For
1<y=<3/2 (3-2y7t 1/2 3/2<y=<5/2 the relaxation time characterizing the expo-
3/2<y<5/2 (2-3y™1 %(1—1/2131) nential decay behaves as-[(2y-3)(5.— 7)™, whereas at
y=5/2 1/2+log 1(1-1/2y) criticality W(t) ~t /23 Numerical verification of these re-
5/2<y 1/2 %(1_1/231) sults as well as of the effect of a time varying threshold in

Eq. (1) are currently under way.
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APPENDIX: COMPUTATION OF P*(¢,k)
Using the binomial theorem to expah@(\)+iWh(\)]¥, the

Let us denote a§y(¢) the probability distribution func- , :
last equation transforms into

tion (PDF of the quantitygk:[EE‘:lwn,on_] appearing in the

definition of the majority function, Eql). The probability K
P*(¢,k) that §>0 is then given by PH WK = S a(km)wm, (A9)
® m=0
+ —
(k) = fo QUEdE. (A1) where the coefficienta(k,m) are given by

The connection Weightsvnj are random variables chosen Mk T ke ing

with probability P,,(w), whereas in the stationary state, each a(k,m) = 27\m X f f [T Th(\)]"e ™™ d\ dé.
o, acquires the values +1 and -1 with probabilitigsand 0

1-¢, respectively. Therefore, the PDF of the produgio, (A10)

is given by It is easy to show thad(k,0)=1/2 for anyk and anyP,(w).

Puo(X) = pPy(X) + (1 — )Py (— X). (A2)  Inorder to do so, note th@(\) is a symmetric function and
g(0)=1. Denoting a5, (&) the inverse Fourier transform of
gV, it follows that G(€) is also a symmetric function
which satisfies[”,G(§)dé=1. From the above and Eg.
(A10) it follows that

Under the mean-field assumptions listed in Sec. IV, eac
term W, O, appearing in the sungy is an independent ran-
dom variable with probability distributioR,,,(x). Therefore,
Qi(é) is given as thék-fold convolution of P, (X):

Qk(g) = Pwa'>l< Pwa’>l< T ¥ Pwo(é?’ a(k,O) = f Gk(g)déf: 1/2. (A]_]_)
k times (A3) 0
wherex is the convolution operator. Taking the Fourier trans-  On the other hand, fom>0 we can change the order of
form of the above equation we get integration in Eq{(A10) and perform the integral ovef by
R R multiplying the integrand bye % and then taking the limit
QN) =[Py, (M) (A2) 50
A~ ~ K im k 0 . n
(BP0 + (L= $)Py (- VI (AS) atkm=1-( ¢ f NGO FTROVT”
m™ —00
Denoting asg(\) and h(\) the real and imaginary parts of .
P.(\), respectively, the last result becomes X lim J dé e (Vg
6—0J o
QW) =[N +iwh(n) (A6) _ime

— k . k= md_)\
= (m)f_x [ h(V)] % (A12)

where in the last equation we have explicitly written t@t 2
depends on the order parameter2¢-1. Inverse Fourier
transforming the last equation and inserting the result intdequationg(A11) and(A12) are the result$8) and(9) of the

Eq. (A1) we get main text.
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