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We investigate the nature of the phase transition from an ordered to a disordered state that occurs in a family
of neural network models with noise. These models are closely related to the majority voter model, where a
ferromagneticlike interaction between the elements prevails. Each member of the family is distinguished by the
network topology, which is determined by the probability distribution of the number of incoming links. We
show that for homogeneous random topologies, the phase transition belongs to the standard mean-field uni-
versality class, characterized by the order parameter exponentb=1/2. However, for scale-free networks we
obtain phase transition exponents ranging from 1/2 to infinity. Furthermore, we show the existence of a phase
transition even for values of the scale-free exponent in the interval(1.5,2], where the average network con-
nectivity diverges.
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I. INTRODUCTION

To determine the relationship between the topology of a
complex network and its dynamical behavior has become a
challenge in current scientific research. In the past few years
there has been a great amount of work to find out the struc-
tural properties of complex networks, both theoretically and
experimentally. These studies have revealed that a wide va-
riety of networks occurring in nature exhibit nontrivial to-
pologies [1–3]. Since the elements in many of these net-
works also interact dynamically, it is a fundamental problem
to determine how the network topology affects its properties.
Although some authors have recently addressed this problem
in different contexts[4–16], the topic still remains largely
unexplored.

Within this framework, ordering phenomena are particu-
larly important because they provide us with general criteria
for the existence or absence of collective behavior in multi-
component systems. Recent studies on ferromagneticlike net-
works have shown that the network topology dramatically
affects their ordering processes. For example, in one-
dimensional Ising models with small-world topology, there
exists a phase transition from magnetized to demagnetized
states even for very small values of the rewiring probability
[4–10]. Another example is the propagation of an infectious
disease in a population. When the network of infectious con-
tacts has a homogeneous random topology, there exists a
threshold for the fraction of vaccinated people above which
the propagation stops. However, when such a network has a
scale-free topology, the propagation never stops and the dis-
ease percolates across the entire population[11–14]. Results
of this sort make it increasingly important to systematically
analyze the relationship between the system’s topology and
its collective behavior.

In this paper we study the ordering processes that occur in
complex neural networks with noise. The models we con-
sider here are based on the McCulloch-Pits model of neuron-
neuron interaction[17]. This model is closely related with
the majority voter model, which has been considered for
many years as a prototype for the study of ordering phenom-
ena[18–22]. Our objective is to characterize the phase tran-
sitions from ordered to disordered states that occur when the
noise parameter is changed. Using a mean-field theory ap-
proach, we find that when nontrivial topologies are imple-
mented in the system, the universality class of this phase
transition departs from the standard result in which the order
parameter exponent is 1/2[23]. It is worth mentioning that a
somewhat similar departure was found in Ref.[24] for a
phenomenological Landau theory of thermodynamic equilib-
rium systems. However, our results differ from the ones
found by Goltsevet al. in several important aspects. First of
all, we deal with a majority model(i.e., a genuine nonequi-
librium model as described in Ref.[25]), on directed net-
works for which it is not clear that a thermodynamic formal-
ism, through a phenomenological free energy, should hold.
Second and more important, we assume scale-free topology
only for the distribution of incoming connections, so the de-
parture from the standard mean-field universality class arises
from an entirely different mechanism than the one proposed
in Ref. [24]. We will return to this point further on.

II. THE MODEL

The system we will be working with consists of a set ofN
discrete variables(voters) s1, s2, … , sN, each acquiring
only two possible values(opinions) sn= +1 or sn=−1, that
change at each time step. The value ofsnst+1d will be de-
termined by another set ofkn voters according to the follow-
ing scheme.

To each voter sn we assign a set In
=hsi1

std , si2
std ,… ,sikn

stdj of kn different elements chosen

randomly from anywhere in the system with equal probabil-
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ity (see Fig. 1). We will call In the set ofinput elementsof
sn.

We let kn, the number of inputs ofsn, be a random vari-
able chosen from a probability distributionPskd, which we
will refer to as theinput probability distribution. In this way
the number of inputs may be different from one element to
another. The probability functionPskd determines the net-
work topology. IfPskd=e−KKk/k!, we have the trivial homo-
geneous random topology in which every element has, on
average,K inputs. We are interested here in the casePskd
,k−g, which corresponds to the so-called scale-free topol-
ogy.

We define the majority functionMnstd associated withsn

at time t as

Mnstd = sgnFo
j=1

kn

wnj
snj

stdG , s1d

wherewnj
is the weight of the connection betweensn and

snj
. These weights just indicate that the input elementssnj

might not all equally contribute to the majority functionMn.
Different choices of the connection weights lead to different
models of neural networks[17]. In this work we take the
wnj

’s as random variables distributed with probabilityPwswd.
Once every elementsn of the network has been assigned

with a set of input elements and a set of connection weights,
the dynamical evolution of the network is given by

snst + 1d = HMnstd with probability 1 −h,

− Mnstd with probability h.
J s2d

Thenoise intensityh is the probability for the majority func-
tion to be violated. It is worth mentioning that whenhÞ0
there are no absorbing states in the system. In the context of
the majority voter model, this parameter represents the “free
will” of the voters; namely, it allows the possibility that even
if the majority of my friends have one opinion about an
issue, with probabilityh I can have the opposite opinion.
The noise intensityh would be an analog to the temperature
in ferromagnetic systems. The dynamics of the network can
thus be set from purely deterministic to purely random by
changing the value ofh from 0 to 1/2.(Higher values ofh
would describe a system where individuals would tend to be
of an opposite mind to the majority of the opinions that
influence them; as we are updating all thesn variables si-
multaneously, such anarchism leads to essentially the same

phenomenology as forh,1/2 and will not be considered in
this work.)

Note that neither the set of input elements nor the connec-
tion weights change in time(quenched dynamics). Once they
have been assigned to every element in the network, they
remain fixed during the temporal evolution of the system.

III. PHASE TRANSITIONS

To characterize the ordering processes in the network, we
introduce the instantaneous order parametercstd as

cstd = lim
N→`

1

NKo
n=1

N

snstdL , s3d

where k¯l denotes an average over the realizations of the
system. This quantity is a measure of the order in the net-
work: if the sn are randomly oriented thenc=0, anducu=1 if
all are “aligned.” In the limitt→` , cstd reaches a stationary
valueC (see Fig. 2).

We want to findC as a function of the noise intensityh
for arbitrary network topologies given byPskd. The case
Pskd=dk,K was analyzed in Ref.[23]. This case corresponds
to a trivial homogeneous random topology in which every
element has the same numberK of inputs. It was shown that,
for this trivial topology, there exists a critical valuehc of the
noise intensity for whichCÞ0 if h,hc and C=0 if h
ùhc. Near the phase transition,C behaves asC<shc−hdb

where b=1/2. Therefore, the phase transition in this case
belongs to what we will refer to as thestandard mean-field
universality class. As we show below, this is always true if
all the moments ofPskd are finite. However, the scale-free
distributionPskd,k−g does not satisfy the above condition.

Figure 3 showsC as a function ofh for scale-free net-
works with N=105 elements and different values of the
scale-free exponentg. To obtain these curves we used the
input probability distribution Pskd=k−sg−1d−sk+1d−sg−1d,
which certainly behaves asPskd,sg−1dk−g for large values
of k [26]. Additionally, the connection weight distribution
Pwswd=dsw−1d was used for these simulations. Similar re-
sults are obtained for other choices ofPwswd as long as it is
not a symmetric function. It is apparent from Fig. 3 that a
phase transition exists. However, its universality class de-

FIG. 1. Schematic representation of the model. The network
consists ofN elements(circles). Each elementsn receives inputs
from a set of otherkn elements randomly chosen from anywhere in
the system. The connections are weighted with the factorswnj

, so
that the inputs do not all contribute equally to the state ofsn.

FIG. 2. (Color online) Temporal evolution of the order param-
eter cstd. This graph was generated for a scale-free network with
N=20 000 elements,g=2, h=0.05, andwnj

=1 for everyni j
. The

stationary valueC of the order parameter is indicated by the dashed
(colored) line.
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pends on the value ofg. In other words, near the phase
transitionC behaves asC,shc−hdb, where nowb is not
necessarily 1/2 but is a function ofg. It is important to note
that the phase transition exists even forg=1.75 andg=2,
which correspond to networks with infinite average connec-
tivity. We will show that phase transitions will occur for any
g.1.5.

In order to findC as a function ofh, let fnstd be the
probability thatsnstd=1. The instantaneous order parameter
cstd is then given by

cstd = lim
N→`

1

No
n=1

N

f2fnstd − 1g. s4d

Analogously, letPn
+std be the probability thatMnstd=1 given

that sn haskn inputs. Note thatPn
+std is just the probability

for the sumo j=1
kn wnj

snj
std to be positive. From the above

definitions and Eq.(2), it follows that fnstd obeys the dy-
namical equation

fnst + 1d = o
kn=1

`

Pskndhs1 − hdPn
+std + hf1 − Pn

+stdgj. s5d

The first term on the right-hand side of the above equation is
the probability that the majorityMnstd at time t is positive
and obeyed. The second term gives the probability that the
majority at timet is negative but is violated. In both cases,
sn will be positive at timet+1. It is important to note that
Pn

+std is a function offn1
std , fn2

std , … , fnkn
std. Eachfnj

std
obeys an equation identical to Eq.(5), except for the sub-
scripts. Therefore, Eq.(5) represents a hierarchy of nested
nonlinear equations for thefnstd’s whose exact analytical
treatment is out of our reach. Nonetheless, we can adopt a
mean-field approach to solve this system of equations.

IV. MEAN-FIELD THEORY FOR Pn
+

The mean-field approach consists in the following as-
sumptions:(1) All the sn’s are statistically independent;(2)
the probabilityfnstd is the same for all the elements of the
network and reaches a constant value in the stationary state:

limt→`fnstd=f. These assumptions are valid as long as the
kn inputs of eachsn are randomly selected from anywhere in
the system with uniform probability. In doing so, the prob-
ability that two different elements share the same inputs is
negligible for very large systems. Therefore, in the limitN
→` one hasInùI j =x for all nÞ j , which implies the sta-
tistical independence of the network elements. If we further
assume thatsn is statistically equivalent to any others j, then
the stationary valuef reached by thefnstd’s is site indepen-
dent.

From the previous assumptions it follows that the station-
ary value of Pn

+std is a function only of f and
kn: limt→`Pn

+std=P+sf ,knd. Thus, in the limitt→`, Eq. (5)
becomes

f = o
kn=1

`

Pskndfs1 − 2hdP+sf,knd + hg. s6d

We can rewrite the above equation in terms of the stationary
valueC of the order parameter by noting from Eq.(4) that
C=2f−1. Substitutingf=sC+1d /2 into Eq.(6) we obtain
the following fixed point equation forC:

C = − 1 + 2o
kn=1

`

Pskndfs1 − 2hdP+sC,knd + hg. s7d

An exact expression forP+sC ,kd was found in Ref.[23]
using the mean-field approach. For the sake of completeness
we reproduce in the Appendix the derivation of this expres-
sion, which is

P+sC,kd =
1

2
+ o

m=1

k

ask,mdCm, s8d

where the coefficientsask,md are defined as

ask,md =
− im+1

2p
S k

m
DE

−`

`

fĝsldgk−mfĥsldgmdl

l
. s9d

In the last expression,ĝsld and ĥsld are the real and imagi-
nary parts, respectively, of the Fourier transform of the con-
nection weight distributionPwswd. From Eq.(9) and the fact

that ĥs−ld=−ĥsld for any Pwswd, it follows that ask,md=0
for even values ofm. Therefore, only odd powers ofC con-
tribute to the sum in Eq.(8). Additionally, if Pwswd is a

symmetric function, thenĥsld=0, which gives P+sC ,kd
=1/2.Consequently, for symmetric connection weight distri-
butions C=0 and there is no order in the system for any
value of the noise intensityh.

Substituting the result(8) into Eq. (7) we get

C = 2s1 − 2hdo
k=1

`

Pskdo
m=1

k

ask,mdCm. s10d

In order to determine the existence and nature of a phase
transition in the system we need to expand the right-hand
side of this equation in a series of growing powers ofC.

FIG. 3. (Color online) The order parameterC as a function of
the noise intensityh for different values of the scale-free exponent
g. These curves were numerically computed for scale-free networks
with N=105 elements,wnj

=1 for every nj, and input probability
distributionPskd=k−sg−1d−sk+1d−sg−1d.
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V. SYSTEMS WITH HOMOGENEOUS RANDOM
TOPOLOGY

A first approach to writing the right-hand side of Eq.(10)
as a power series inC is to interchange the two sums ap-
pearing in this equation. Assuming that this is possible Eq.
(10) becomes

C = 2s1 − 2hdo
m=1

`

bmCm, s11d

where the coefficientsbm are given by

bm = o
k=m

`

Pskdask,md. s12d

Near the phase transitionuCu!1 and we can keep only the
first two terms of the sum in Eq.(11), which gives

C < 2s1 − 2hdsb1C + b3C3d. s13d

In addition to the trivial solutionC=0, the above equation
has two other nontrivial solutions given by

C2 <
1

ub3u Sb1 −
1

2s1 − 2hdD . s14d

The critical valuehc of the noise at which the phase transi-
tion occurs is determined from the above equation by the
conditionC2=0, which gives

hc =
1

2
S1 −

1

2b1
D . s15d

On the other hand, it follows from Eq.(14) that, very close to
the phase transition,C behaves as

C = 5 2b1

Îub3u
shc − hd1/2 for 0 , hc − h ! 1,

0 for h ù hc.
6 s16d

The above analysis shows that if the two sums in Eq.(10)
can be interchanged, then the phase transition belongs to the
standard mean-field universality class, for which the order
parameter exponent isb=1/2. As weshow next, such inter-
change is possible only if all the moments ofPskd are finite,
as for a Poisson distribution. However, this condition is not
true for Pskd,k−g.

VI. THE CENTRAL LIMIT THEOREM

Although Eq. (9) gives the exact value ofask,md for a
particular connection weight distributionPwswd, the central
limit theorem implies thatask,md,km/2 for large values ofk
and anyPwswd with finite first and second moments.

As mentioned above,P+sC ,kd is the probability that the
sumjk=o j=1

k wnj
snj

appearing in the definition of the major-
ity rule, evaluates to a positive number. Thek terms in this
sum are independent identically distributed random variables
with meanm=Ckwl and varianceD2=kw2l−C2kwl2, where
kwl and kw2l are the first and second moments ofPwswd,

respectively. Therefore, the central limit theorem applies to
the distribution ofjk for large values ofk, for whichP+sC ,kd
will be given by

P+sC,kd <
1

Î2pkD2E
0

`

expF−
sj − kmd2

2kD2 Gdj s17d

=
1

2F1 + erfSmk1/2

Î2D
DG s18d

=
1

2
+ o

n=0

`
s− 1dn

Îps2n + 1dn!
Smk1/2

Î2D
D2n+1

. s19d

Comparing the last expression with Eq.(8) (making m
=2n+1 and C=m / kwl), we obtain thatask,md,km/2 for
large values ofk. This result prevents us from changing the
order of summation in Eq.(10) for an arbitrary input distri-
bution Pskd. Indeed, sinceask,md,km/2 for largek, the co-
efficientsbm appearing in Eq.(11) are well defined only if all
the moments ofPskd are finite. However, whenPskd,k−g,
the coefficientsbm diverge formù2sg−1d. Consequently, in
this case the series in growing powers ofC of Eq. (10)
cannot be obtained by interchanging the sums and the analy-
sis leading to Eq.(16) is no longer valid.

VII. DEPARTURE FROM THE STANDARD MEAN-FIELD
UNIVERSALITY CLASS

The results of the preceding sections show that if the mo-
ments ofPskd are all finite, the phase transition predicted by
Eq. (7) belongs to the standard mean-field universality class.
This is not necessarily true for a scale-free distribution. Nev-
ertheless, the existence and the nature of a phase transition in
this case will still depend on the smallC expansion of the
right-hand side of Eq.(7), which vanishes asC→0, but is
no longer analytic atC=0. In order to evaluate the behavior
for a scale-free distribution, it is necessary to extract first the
singular part of Eq.(7). To this end, we begin by assuming
that asymptoticallyPskd,k−g, with 3/2,g,5/2. This en-
sures that b1=ok=1

` Pskdask,1d converges but bm

=ok=m
` Pskdask,md diverges form.1. Then we consider the

obvious identity

P+sC,kd = P+s0,kd +
] P+s0,kd

] C
C

+E
0

C E
0

c8 ]2P+sc9,kd
] c92 dc9dc8, s20d

which in this case is useful because for 3/2,g,5/2, all the
derivatives]mP+sC ,kd /]Cm diverge formù2 whenc→0.
Thus, the nonanalytic behavior ofP+sC ,kd is contained in
the last term of Eq.(20). From Eq.(8), which gives the exact
value of P+sC ,kd, we obtain P+s0,kd=1/2 and
]P+s0,kd /]C=ask,1d. Therefore, Eq.(20) becomes
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P+sC,kd =
1

2
+ ask,1dC +E

0

C E
0

c8 ]2P+sc9,kd
] c92 dc9dc8.

s21d

Substituting the last result into Eq.(7), and taking into ac-
count thatb1=ok=1

` Pskdask,1d [see Eq.(12)], we get

C = 2s1 − 2hdFb1C + o
k=1

`

PskdE
0

C E
0

c8 ]2P+sc9,kd
]2c9

dc9dc8G .

s22d

In the rangegP s3/2,5/2d that we are considering, the
nonanalyticity comes from the largek behavior of the last
term of Eq.(22). Thus, to determine its nonanalytic behavior,
we are entitled to use the approximations toP+sC ,kd arising
from the central limit theorem, in particular Eq.(18). In the
small C limit, P+sC ,kd can be written as

P+sC,kd <
1

2F1 + erfSCkwlk1/2

Î2kw2l
DG . s23d

Substituting the last expression into Eq.(22) we get

C < 2s1 − 2hdFb1C −
1

Î2p
S kwl2

kw2l
D3/2

3 E
0

C E
0

c8
c9So

k=1

`

Pskdk3/2e−kkwl2c92/2kw2lDdc9dc8G .

s24d

The singular behavior of the sum can be evaluated by writing
Pskd=Ck−g (whereC is a numerical constant) and replacing
the sum by an integral overk. This procedure gives

C < 2s1 − 2hd

3Fb1C −
2C
Îp

S kwl2

2kw2lD
g−1 Gs5/2 −gd

s2g − 3ds2g − 2d
CuCu2g−3G ,

s25d

which substitutes for Eq.(13) as the smallC approximation
of the fixed point equation for scale-free topologies with
3/2,g,5/2.

For g=5/2 alogarithmic correction appears and Eq.(25)
should be replaced by

C < 2s1 − 2hdFb1C −
2C

3Îp
S kwl2

2kw2lD
3/2

C3uln CuG .

s26d

For g.5/2, the coefficientb3 converges and the behavior
of the fixed point equation near the transition is accurately
reproduced by Eq.(13). The nonanalytic terms appear as
higher order corrections. In this case, the phase transition
will fall again in the standard mean-field universality class as
described in Eq.(14). On the other hand, for lower values of
g, namely, for 1,gø3/2, the coefficientb1 diverges. An
analysis along the same lines as above shows that, in this
case, the nonanalytic term appears as a power smaller than

linear. Consequently, there is no phase transition: the system
remains ordered for allh,1/2. However, the order param-
eter vanishes asC,s1/2−hd1/s3−2gd whenh→1/2.

Thus, the range of interest is 3/2,gø5/2 for which the
behavior of the fixed point equation is described by Eqs.(25)
and (26). In this range the system will exhibit a phase tran-
sition at a critical value of the noise intensityhc,1/2. From
Eqs.(25) and(26) we obtainhc= 1

2s1−1/2b1d, just as in the
standard mean-field case[see Eq.(15) and Fig. 4]. However,
the phase transition in this case will not be characterized by
the standard mean-field exponents. Indeed, for 3/2,g
,5/2, Eq.(25) predicts that very close to the phase transi-
tion, C behaves as

uCu , FÎ4ps2g − 3ds2g − 2db1
2

CGs5/2 −gd

3S2kw2l
kwl2 Dg−1

shc − hdG1/s2g−3d

. s27d

Thus, the exponentb=s2g−3d−1 characterizing the behavior
of the order parameter nearhc is in the ranges` ,1 /2d asg
varies from 3/2+ to 5/2−. On the other hand, forg=5/2, the
logarithmic correction still gives a deviation from standard
mean-field behavior. In this case, Eq.(26) gives

C2uln Cu ,
6Îpb1

2

C
S2kw2l

kwl2 D3/2

shc − hd. s28d

Figure 5 showsC as a function ofhc−h for different
values of g in a log-log plot. The symbols are the same
numerical data as in Fig. 3 and the lines are the graphs of the
theoretical results given in Eqs.(16), (27), and(28), depend-
ing upon the corresponding value ofg. We set C=g−1,
which is the normalization constant of the power-law distri-
butionPskd=Ck−g whenk varies continuously between 1 and
`. We can see from Fig. 5 the excellent agreement between
simulation and theory.

VIII. SUMMARY AND DISCUSSION

We have considered the phase transitions from ordered to
disordered states that occur in a family of neural network
models with noise. The existence and nature of the phase

FIG. 4. Critical valuehc of the noise intensity as a function of
the scale-free exponentg. The curve is the graph of the analytic
solution Eq.(15). Note thathc,1/2 even for 3/2,gø2, where
the average network connectivity is infinite.
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transition are strongly determined by the input probability
distribution Pskd. If all the moments ofPskd are finite(ho-
mogeneous random topologies), the phase transition belongs
to the standard mean-field universality class; namely, in the
limit h→hc the order parameter behaves asC,shc−hdb

with b=1/2.
Departure from the standard mean-field universality class

might occur ifPskd has divergent moments, as for scale-free
networks wherePskd,k−g. In this case, the phase-transition
exponentb is a function of the scale-free exponentg. Table
I summarizes howb and the critical noisehc depend ong.
There are several important aspects to mention. First, forg
P s1,3/2g the critical value of the noise ishc=1/2. This is
the maximum value that the noise intensity can acquire and
would correspond to infinite temperature in ferromagnetic-
like systems. Therefore, in this case the network always ex-
hibits long range order for any “finite temperature.” The or-
der parameter vanishes asC,s1/2−hd1/s3−2gd when h
→1/2−.

Second, for gP s3/2,5/2d we have hc,1/2 and C
,shc−hd1/s2−3gd when h→hc

−. This behavior of the order
parameter represents a clear departure from the standard
mean-field universality class. Although Goltsevet al. also
found a similar result in a phenomenological Landau theory
of ferromagnetic systems[24], their departure obeys an en-
tirely different reason from the one we have found here. In

the networks we have considered, the scale-free topology is
implemented only in the network ofinput connections. Since
the input elements are chosen with uniform probability from
anywhere in the system, it turns out that theoutputconnec-
tions follow a Poisson distribution. Therefore, we never have
isolated “hubs” dominating the dynamical behavior of the
entire system, which is what causes the departure from stan-
dard mean-field behavior in Goltsev’s work.

Third and probably more important, we have shown the
existence of a phase transition even in the range 3/2,g
ø2, in which the average network connectivity is infinite. To
our knowledge, this is the first example of a phase transition
at “finite temperature” occurring in a network with infinite
connectivity. This result is in contrast with the one reported
by Goltsevet al., where the first moment ofPskd must be
finite for the phase transition to exist.

In the majority voter networks we have analyzed, the
phase transition will exist as long as thekk1/2l moment of
Pskd is finite. This result can be understood by considering
the quantityjk=o j=1

k wnj
snj

, appearing in the definition of the
majority rule, as a random walk ofk steps with average value
mk=kwlCk and rmsDk=Îkskw2l−Ckwl2d. According to the
central limit theorem(see Sec. VI), the convergence of the
sumoksmk/DkdPskd,okk

1/2Pskd is a necessary condition for
the existence of the phase transition. This convergence guar-
antees that the quantity

Kmk

Dk
L = o

k=1

`
mk

Dk
Pskd

remains finite. In such a case, there will always exist a “finite
temperature”(namely, a critical value of the noisehc,1/2)
at which the order in the system is destroyed.

For g.5/2 the phase transition falls again into the stan-
dard mean-field universality class. It is worth mentioning
that some preliminary numerical results indicate that this is
also the case for one-dimensional small-world networks with
the same dynamical interaction we have presented here. The
mean-field assumptions are not valid in this case since the
elements are no longer statistically independent. Neverthe-
less, the phase transition in such networks is still in the stan-
dard mean-field class for any nonzero value of the rewiring
probability. Whether the convergence of all the moments of
Pskd guarantees or not the standard mean-field universality
class in this family of networks, regardless of the statistical
independence of the elements, is still an open problem.

Finally, regarding the temporal evolution of the order pa-
rameter towards its steady value, a stability analysis of the
evolution equation predicts that the order parameter ulti-
mately decays exponentially to its stationary value except at
the critical noise, where a power law decay ensues. For
3/2,gø5/2 the relaxation time characterizing the expo-
nential decay behaves ast,fs2g−3dshc−hdg−1, whereas at
criticality Cstd, t−1/s2g−3d. Numerical verification of these re-
sults as well as of the effect of a time varying threshold in
Eq. (1) are currently under way.

FIG. 5. (Color online) Log-log plot of C as a function ofhc

−h for different values of the scale-free exponentg. The symbols
are the result of the simulations(same data as in Fig. 3) and the
solid lines are the graphs of the theoretical solutions given in the
text: Eq. (16) for g=3, Eq. (28) for g=2.5, and Eq.(27) for g=2
andg=1.75.

TABLE I. b and hc for different values ofg. In the range 1
,gø3/2 there is no phase transition sincehc=1/2 is the maxi-
mum value that the noise intensity can acquire. Forg=5/2 there is
a logarithmic correction tob=1/2.

C,shc−hdb

b hc

1,gø3/2 s3−2gd−1 1/2

3/2,g,5/2 s2−3gd−1 1
2s1−1/2b1d

g=5/2 1/2+log 1
2s1−1/2b1d

5/2,g 1/2 1
2s1−1/2b1d
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APPENDIX: COMPUTATION OF P+
„f ,k…

Let us denote asQksjd the probability distribution func-
tion (PDF) of the quantityjk=fo j=1

k wnj
snj

g appearing in the
definition of the majority function, Eq.(1). The probability
P+sf ,kd that jk.0 is then given by

P+sf,kd =E
0

`

Qksjddj. sA1d

The connection weightswnj
are random variables chosen

with probability Pwswd, whereas in the stationary state, each
sn acquires the values +1 and −1 with probabilitiesf and
1−f, respectively. Therefore, the PDF of the productwnj

snj
is given by

Pwssxd = fPwsxd + s1 − fdPws− xd. sA2d

Under the mean-field assumptions listed in Sec. IV, each
term wnj

snj
appearing in the sumjk is an independent ran-

dom variable with probability distributionPwssxd. Therefore,
Qksjd is given as thek-fold convolution ofPwssxd:

sA3d

wherep is the convolution operator. Taking the Fourier trans-
form of the above equation we get

Q̂ksld = fP̂wssldgk sA4d

=ffP̂wsld + s1 − fdP̂ws− ldgk. sA5d

Denoting asĝsld and ĥsld the real and imaginary parts of

P̂wsld, respectively, the last result becomes

Q̂ksl,Cd = fĝsld + iCĥsldgk, sA6d

where in the last equation we have explicitly written thatQ̂k
depends on the order parameterC=2f−1. Inverse Fourier
transforming the last equation and inserting the result into
Eq. (A1) we get

P+sC,kd =
1

2p
E

0

` E
−`

`

Q̂ksl,Cde−iljdl dj sA7d

=
1

2p
E

0

` E
−`

`

fĝsld + iCĥsldgke−iljdl dj.

sA8d

Using the binomial theorem to expandfĝsld+ iCĥsldgk, the
last equation transforms into

P+sC,kd = o
m=0

k

ask,mdCm, sA9d

where the coefficientsask,md are given by

ask,md =
im

2p
S k

m
D 3 E

0

` E
−`

`

fĝsldgk−mfĥsldgme−iljdl dj.

sA10d

It is easy to show thatask,0d=1/2 for anyk and anyPwswd.
In order to do so, note thatĝsld is a symmetric function and
ĝs0d=1. Denoting asGksjd the inverse Fourier transform of
fĝsldgk, it follows that Gksjd is also a symmetric function
which satisfiese−`

` Gksjddj=1. From the above and Eq.
(A10) it follows that

ask,0d =E
0

`

Gksjddj = 1/2. sA11d

On the other hand, form.0 we can change the order of
integration in Eq.(A10) and perform the integral overj by
multiplying the integrand bye−dj and then taking the limit
d→0:

ask,md =
im

2p
S k

m
DE

−`

`

dlfĝsldgk−mfĥsldgm

3 lim
d→0
E

0

`

dj e−sd+ildj

=
− im+1

2p
S k

m
DE

−`

`

fĝsldgk−mfĥsldgmdl

l
. sA12d

Equations(A11) and(A12) are the results(8) and(9) of the
main text.
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